- bounded above operator
- ограниченый сверху оператор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Operator norm — In mathematics, the operator norm is a means to measure the size of certain linear operators. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Contents 1 Introduction and definition 2 … Wikipedia
Bounded function — In mathematics, a function f defined on some set X with real or complex values is called bounded, if the set of its values is bounded. In other words, there exists a number M >0 such that :|f(x)|le M for all x in X .Sometimes, if f(x)le A for all … Wikipedia
Operator topology — In the mathematical field of functional analysis there are several standard topologies which are given to the algebra B(H) of bounded linear operators on a Hilbert space H. Contents 1 Introduction 2 List of topologies on B(H) 3 … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Self-adjoint operator — In mathematics, on a finite dimensional inner product space, a self adjoint operator is one that is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is equal to its own conjugate transpose.… … Wikipedia
μ operator — In computability theory, the μ operator, minimization operator, or unbounded search operator searches for the least natural number with a given property. Contents 1 Definition 2 Properties 3 Examples … Wikipedia
Μ operator — In computability theory, the μ operator, minimization operator, or unbounded search operator searches for the least natural number with a given property. Definition Suppose that R( y, x1 , . . ., xk ) is a fixed k+1 ary relation on the natural… … Wikipedia
Subnormal operator — In mathematics, especially operator theory, subnormal operators are bounded operators on a Hilbert space defined by weakening the requirements for normal operators. Some examples of subnormal operators are isometries and Toeplitz operators with… … Wikipedia
Dilation (operator theory) — In operator theory, a dilation of an operator T on a Hilbert space H is an operator on a larger Hilbert space K , whose restriction to H is T. More formally, let T be a bounded operator on some Hilbert space H, and H be a subspace of a larger… … Wikipedia
Integration by parts operator — In mathematics, an integration by parts operator is a linear operator used to formulate integration by parts formulae; the most interesting examples of integration by parts operators occur in infinite dimensional settings and find uses in… … Wikipedia
Nuclear operator — In mathematics, a nuclear operator is roughly a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis (at least on well behaved spaces; there are some spaces on which nuclear… … Wikipedia